Alfalfa for Dairy Cows

- Evaluating
- $Valuation
- Harvest/Storage
- Feeding

Cows do NOT require alfalfa!

Cows require nutrients
- Energy
- Protein
- Fiber
- Minerals
- Vitamins

Feeds are simply nutrient delivery devices*

* True for many feeds but forages are different
High Quality Alfalfa

1. Provides **needed** nutrients cheaper than alternatives

2. Allows for high intakes

Forage Quality = Concentration of Available Nutrients \times DMI potential

Economic Value of Feeds

The value of a feed should approximate the sum of the value of its nutrients

$/\text{ton} = \text{Mcal NEL} \times \$/\text{Mcal} + \text{lbs MP} \times \$/\text{lb MP} + \text{lbs eNDF} \times \$/\text{lb eNDF} + \ldots$
Economic Evaluation of Feeds

Cost of a feed = \sum value of its nutrients

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Central Ohio</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEL, $/Mcal</td>
<td>0.10 0.18</td>
</tr>
<tr>
<td>MP, $/lb</td>
<td>0.28 0.30</td>
</tr>
<tr>
<td>eNDF, $/lb</td>
<td>0.04 0.01</td>
</tr>
<tr>
<td>neNDF, $/lb</td>
<td>-0.09 -0.14</td>
</tr>
</tbody>
</table>

See: http://dairy.osu.edu (Buckeye dairy news)

All Protein is not created equal

CP: SBM ≠ DDG ≠ Alfalfa ≠ Canola

CP → MP Efficiency

- Alfalfa: 0.55
- Distillers: 0.65
- SBM: 0.70

Do Not Use CP to compare value across feeds
Lab Report

1 Ton Alfalfa Hay

85% DM
42% NDF
0.58 Mcal/lb NEL
20% CP

MP assumed = 0.55CP

1700 lbs
714 lbs
986 Mcal
340 lbs

Economic Value
NDF = $0.01/lb
NEL = $0.18/Mcal
MP = $0.30/lb

From SESAME
Based on current costs (OH)
This alfalfa is **worth** $245/ton

Major Problem:
Approach ignores effect of “forage quality” on milk yield

NDF from Forage affects DMI

Increasing NDF via forage usually reduces DMI

Allen, 2000
Increasing alfalfa NDF reduces milk and NEL

FCM = 75 - 0.34*NDF

TMR digest (50% alf+50% conc)

Alfalfa NDF, %

Weiss, 2007

Weiss, 2007

Alhadhrani and Huber, 1992

Alfalfa Quality Adjustment

Captures value of lost or increased milk yield

Base: 44% NDF = 0 Adjustment

$/ton DM/% NDF

35-44% >44%

$17/cwt +$4.75 -$4.75

$22/cwt +$7.00 -$7.00

This adjustment is after you have calculated nutrient value
Quality…. or quantity?

Dianne Shoemaker, OSU Extension
(Proc. Tristate Dairy Nutr Conf. 2012, pg 87-96)

3-cut average vs 4-cut better stuff

Assumptions
- 3-cut @ 10% bloom yields 15-20% more than 4 cut at bud stage (Undersander)
- 4-cut yield = 5.8 T DM (2011 Wooster OH)
- 3-cut yield = 6.7 (115%) or 7 T (120%)
- Costs from 2012 OSU Haylage budget
4-Cut: 60:40 with 40% or 44% NDF vs. 3-cut @44% NDF

115% avg $50/yr; 120% avg $95/yr greater returns than the 4-cut system

4-Cut: 75:25 with 40 or 44% NDF vs. 3-cut with 44% NDF

In last 5 years: 115% avg. $51/year

120% avg $80/yr greater returns
4-Cut all at 40% NDF vs. 3-cut with 44% NDF

120% 3-cut avg $52 higher than 4-cut in last 5 years

4-Cut 60/40 with 40 or 36% NDF vs. 3-cut with 44% NDF

4 cut always has the advantage, averaging $91/acre over 115% and $45/acre over 120%
Quality vs Quantity

- 3 cuts of +15-20% yield of fair quality more profitable than 4 cuts with some higher quality
- If some premium (36% NDF) alfalfa is harvested then 4-cut more profitable
- Did not factor in longer stand life of 3-cut systems

Important Quality/Economic Measures (in order)

1. DM (storage, $)
2. NDF (NEL, DMI)
3. CP ($)
4. IVNDFD (DMI, NEL)
5. Ash (NEL)
Under **ideal** conditions, ~15% of the forage harvested as hay or silage is lost (shrink)

Production Cost = $180/ton of DM

<table>
<thead>
<tr>
<th>Shrink</th>
<th>Cost of forage fed</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>$207/ton of DM</td>
</tr>
<tr>
<td>20%</td>
<td>$216/ton of DM</td>
</tr>
<tr>
<td>25%</td>
<td>$225/ton of DM</td>
</tr>
<tr>
<td>30%</td>
<td>$234/ton of DM</td>
</tr>
</tbody>
</table>

Coblentz and Bertram, 2012
Hay Silage DM, 3 farms

Hay Silage NDF, 4 farms
Hay Silage CP, 3 farms

Within Farm Ranges (14 days)

DM: Hay sil. more variable than corn sil.
NDF: Hay silage = corn silage
Within farm ranges in forage DM%
Feeds were sampled over a 12 month period and were fed at least 5 months on a farm.

- **Min**
- **Mean**
- **Max**

<table>
<thead>
<tr>
<th></th>
<th>Corn Sil</th>
<th>Legume Sil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farms</td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>

Within farm ranges in forage NDF%
Feeds were sampled over a 12 month period and were fed at least 5 months on a farm.

- **Min**
- **Mean**
- **Max**

<table>
<thead>
<tr>
<th></th>
<th>Corn Sil</th>
<th>Legume Sil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farms</td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>
How many samples were required to get the ‘right answer’?

Right answer = <5% from mean

Corn Silage vs. Alfalfa: Is there an optimum mix?

1. Risk (weather, cropping, feed costs, milk yield/cow health)

2. Farm specific: what can you grow and what does it cost?

3. Long term protein vs energy costs
More alfalfa increases milk yields
With Very good alfalfa (38 NDF, 23CP)

Alfalfa silage: Corn Silage Ratios
With Very good alfalfa (38 NDF, 23CP)

Brito and Broderick (2006)
More Corn Silage Increases Milk Yields
(Alf = 43% NDF)

Kowser et al., 2008

Increasing Alfalfa:Corn Silage Ratio

Generally:

1. DMI
2. Milk and protein yield
3. Milk fat% and yield
4. Milk protein%
5. Manure output
6. 'Purchased' feed costs
7. Total feed costs or

Diagram:

- DMI and ECM
- Fat and Protein
- Various ratios: 40:0, 24:16, 20:20, 16:24
Formulation: Alf vs CS Diets

<table>
<thead>
<tr>
<th>Milk Fat</th>
<th>High Alf</th>
<th>High CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Tallow (Sil)</td>
<td>⇐</td>
<td>⇒</td>
</tr>
<tr>
<td>+ Starch (Sil)</td>
<td>⬇</td>
<td>⬇</td>
</tr>
<tr>
<td>+ Monensin (Hay)</td>
<td>⬇</td>
<td>⇐</td>
</tr>
<tr>
<td>+ DDG (Hay)</td>
<td>⬇</td>
<td>⇐</td>
</tr>
</tbody>
</table>

Higher alfalfa allows higher starch

Weiss et al., 2009
Formulation: Alf vs CS Diets

<table>
<thead>
<tr>
<th>Milk Protein</th>
<th>High Alf</th>
<th>High CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ DDG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Formulation: Alf vs CS Diets

<table>
<thead>
<tr>
<th>Milk</th>
<th>High Alf</th>
<th>High CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Essential oils (Sil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ DDG (Hay/sil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Molasses (Hay)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Ca salts of fat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMI \downarrow
Summary

1. DM and NDF good indices of quality
 - Proper DM = ↓shrink (big bucks)
 - Proper NDF = good DMI with good yields

2. Blend of alf and corn silage most profitable over time

3. Most situations: majority corn silage is more profitable

4. Balance for nutrients (with a few adjustments)
Mowing at sundown was better than at sunup for alfalfa stored as balage (52% DM, no rain)

Britto et al., 2008

Remember wilt time
a.m. mow: 30 hr
p.m. mow: 48 hr

+3.5 lbs